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Abstract - To maximize battery lifetimes of distributed wireless sensors,
network protocols and data fusion algorithms should be designed with low
power techniques. Network protocols minimize energy by using localized com-
munication and control and by exploiting computation/communication trade-
offs. In addition, data fusion algorithms such as beamforming aggregate data
from multiple sources to reduce data redundancy and enhance signal-to-noise
ratios, thus further reducing the required communications. We have developed
a sensor network system that uses a localized clustering protocol and beam
forming data fusion to enable energy-efficient collaboration. We have imple-
mented two beamforming algorithms, the Maximum Power and the Least
Mean Squares (LMS) beamforming algorithms, on the StrongARM (SA-1100)
processor. Results from our experiments show that the LMS algorithm
requires less than one-fifth the energy required by the Maximum Power beam-
forming algorithm with onl y a 3 dB loss in performance. The energy require-
ments of the LMS algorithm was further reduced through the use of variable-
length filters, a variable voltage supply, and variable adaptation time.

1. INTRODUCTION
Networks of microsensors can greatly improve environment monitoring

many civil and military applications [1]. For example, a wireless sensor system
be used for boundary surveillance, for target detection and classification, o
patient monitoring. Multiple sensors provide fault tolerence and can provide v
able inferences about the physical world to the end-user.

In order to prolong the lifetimes of the wireless sensors, all aspects of the se
system should be energy-efficient. This includes the sensor, data conversion, s
processors, network protocols, and RF communication. Energy scalability fur
allows the sensor network and individual sensors to adapt as energy resources
system diminish. This allows for longer battery lifetimes and more efficient sen
systems.
Prepared through collaborative participation in the Advanced Sensors Consortium sponsored
by the U.S. Army Research Laboratory under Cooperative Agreement DAAL01-96-2-001.
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A network protocol layer allows for sensor collaboration. If the distan
between neighboring sensors is less than the distance between the sensors a
end-user, then transmission power can be saved if the sensors collaborate lo
We have developed a clustering communication protocol whereby sensors com
nicate with a local control center (called a “cluster-head”). Since it is likely that
sensors in the local cluster share highly correlated data, the cluster-head aggre
the data and then transmits the aggregate data to the end-user. In addition to r
ing transmission power, effective data aggregation can improve signal enha
ment, detection and classification.

Beamforming is one method of combining data from multiple sensors in or
to satisfy a given performance criteria. The advantage of beamforming is tha
desired signal is enhanced while the uncorrelated noise is reduced, which in
improves detection and classification of the source. An extension of beamform
also allows for source localization and tracking [2]. However, beamforming al
rithms are computationally complex, often involving matrix operations, and t
large amount of computation results in large power dissipation. Thus, there
tradeoffs between performance and power dissipation which should be consid
when implementing beamforming algorithms for sensor networks.

2. LOW POWER NETWORK PROTOCOLS

Often, sensor networks are used to monitor remote areas or disaster situa
In both these scenarios, the end-user cannot be located near the sensors.
direct communication between the sensors and the end-user, as shown in Figu
is extremely energy-intensive, since transmission energy goes asRn (n typically 2-
4). In addition, direct communication may not be feasible for large-scale sensor
works. If, for example, frequency-division is used (e.g., each sensor obtains a
tain bandwidth in which to transmit data), the amount of information that can
sent from each sensor to the end-user becomes negligible as the number of s
increases, because each sensor’s bandwidth is reduced down to zero. Thu
methods of communication need to be developed.

A common method of communication in wireless networks is multi-hop ro
ing, where sensors act as routers for other sensors’ data in addition to sensin
environment, as shown in Figure 1b. Multi-hop routing minimizes the distance

Figure 1.  (a) Direct communication with basestation. (b) Multi-hop
communication with basestation. (c) Clustering algorithm. The grey nodes
represent “cluster-heads”, and the function f(A,B,C) represents the data fusio
algorithm.
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individual sensor must transmit its data, and hence minimizes the dissipated en
for that sensor. However, multi-hop requires that several sensors transmit
receive a particular signal; hence this does not achieve global energy-efficiency
example, the sensors near the end-user will be used as routers for a large num
the other sensors, and their lifetimes will be dramatically reduced using su
multi-hop protocol.

Since data from neighboring sensors will often be highly correlated, it is po
ble to aggregate the data locally using an algorithm such as beamforming and
send the aggregate signal to the end-user to save energy. Figure 2 shows the a
of energy required to aggregate data from 2, 3, and 4 sensors and to transm
result to the end-user, as compared to all of the individual sensors transmitting
to the end-user. As shown in this plot, there is a large advantage to using local
aggregation (beamforming), rather than direct communication. In this scenario
assume that the transmission energy dissipated is 10pJ/bit/m4 and the reception
energy dissipated is 10pJ/bit.

We have develped a clustering algorithm that utilizes the energy savings f
data aggregation to greatly reduce the energy dissipation in a sensor system.
algorithm, the sensors self-organize into local clusters, as shown in Figure 1c.
cluster has a “cluster-head”, a sensor that receives data from all other sensors
cluster, performs data fusion (e.g., beamforming), and transmits the aggregate
to the end-user. This greatly reduces the amount of data that is sent to the end
and thus achieves a global energy minimization. Furthermore, the clusters ca
organized hierarchically such that the cluster-heads transmit the aggregate d
“super-cluster-head” nodes, rather than directly to the end-user so as to fu
reduce energy dissipation.

Figure 3a shows the total energy dissipated in the sensor network as the di
ter of the network is increased using a direct transmission protocol, a multi-
routing protocol, and our clustering algorithm. This plot shows that our cluster
algorithm achieves greater than a factor of 6 reduction in energy compared w
direct communication approach and a multi-hop routing protocol. In addition
reducing energy dissipation, Figure 3b shows that our clustering algorithm is
to double the system lifetime compared with the other protocols.

Figure 2. Data aggregation done locally can reduce energy dissipation.
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In addition to minimizing energy dissipation, our clustering algorithm has s
eral other advantages over tradition routing protocols. The clusters are self-org
ing and use localized coordiation and control, which not only enables scalabilit
the network (as no reorganization of the network is required when nodes are a
to the system), it also enhances the fault tolerance of the system. This protoco
easily handle trade-offs in computation and communication. If computation
expensive compared to communication costs, the network can have the cluster
transmit all data directly to the basestation. On the other hand, if computatio
cheap compared to communication costs, the cluster-head can perform signa
cessing functions to compress the data from all the sensors in the cluster and
mit the compressed (aggregated) data to the end-user. For example, any o
beamforming algorithms discussed in the next section can be used by the clu
head to aggregate the data from the sensors in the cluster.

3. BEAMFORMING ALGORITHMS
Beamforming algorithms combine signals from multiple sensors in order to

isfy some optimization criteria. Example criteria are minimizing mean squa
error (MSE), maximizing signal-to-noise ratio (SNR), and minimizing varianc
Figure 4 shows a block diagram that describes how beamforming algorithms ca
applied to a wireless network of sensors. Assume there areM acoustic sensors
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Figure 3. A comparison of (a) total energy dissipated as the diameter of the
sensor network is increased and (b) system lifetime for a direct communicati
protocol, a multi-hop routing protocol, and our clustering algorithm.

Figure 4. Beamforming at the cluster-head.
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which have detected a target, and each sensor transmits its data using the wi
channel to the cluster-head, as described in Section 2. At the cluster-head
beamforming algorithm chooses theL-tap FIR filters, , to optimize a selected
criteria. Each is applied to theith sensor data,si(n), and the resulting signals
are summed for allM sensors, to get the beamformed signal,y(n):

(1)

We have benchmarked the energy requirements and performance of two b
forming algorithms that are suitable for the application of distributed sensor nod

3.1  Maximum Power Beamforming Algorithm

In [3], Yao et al. propose an eigenvector-based method to perform Maxim
Power beamforming for a randomly spaced sensor network. The algorithm use
correlation matrix of the sensor data to find the weighting filters that pick out
signal with the highest peak power spectral density. The weighting filters are c
sen to solve the following maximization problem,

maximize , subject to . (2)

where is the space-time correlation matrix of the sensor data, given by

(3)

and  is the sensor data.

The desired weighting vector is given by the eigenvector correspondin
the largest eigenvalue of . A detailed proof of this solution can be found in

The bulk of the computation involved in Maximum Power beamforming
involved in the following steps: (1) computing , the correlation matrix, fro
the sensor data and (2) performing the eigenvector decomposition of .
power method of eigenvector decomposition provides a low-computation, itera
method to find the eigenvector with the largest eigenvalue [3].

3.2  Least Mean Squares (LMS) Algorithm

Another algorithm used in antenna array processing is the time-domain L
adaptive algorithm [4]. The LMS algorithm uses a minimum mean squared e
criterion to determine the appropriate array weighting filters. This algorithm is c
sidered an optimum algorithm because the solution minimizes the error betw
the array output and the desired signal. Therefore, it is assumed that the desire
nal is known, or a signal containing the desired signal characteristics is availab

The LMS iterative equations are :

(4)

wi n( )
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∑
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whereµ is the stepsize, which governs the rate of convergence of this iterative
cess, and  is the error function between the output and the desired signal

3.3  Energy Requirements

We ran the algorithms on the StrongArm-1100 (SA-1100) processor. Figu
shows the energy dissipated (inµJ/sample) for 32 tap sensors as the number of s
sors,M, is varied from 2 to 10. This figure shows that the LMS algorithm requir
one-tenth the energy of the Maximum Power beamforming algorithm. In additi
the energy requirement for the LMS algorithm is linear with the number of sens
while the Maximum Power algorithm has a quadratic dependence on the numb
sensors.

3.4  Energy - Quality Tradeoff

Through the use of beamforming, the source signature is enhanced, leadi
improved detection and classification. We benchmarked the performance of the
beamforming algorithms using the mean squared error (MSE) quality measure
using acoustic data collected of tracked vehicles. Figure 6 shows the perform
of the two algorithms for different SNR’s, as we increase the number of sens
involved in beamforming from no beamforming and 2 sensor beamforming up
sensor beamforming. We assume that there is also communication energy

ε n( )

Figure 5. Energy requirements for Beamforming algorithms on SA-1100.

2 3 4 5 6 7 8 9 10

10
−2

10
−1

10
0

10
1

Number of Sensors involved in Beamforming

En
er

gy
  (

uJ
/sa

m
ple

)

Energy for Maximum Power
Energy for LMS          

Figure 6. Energy vs. MSE for Maximum Power and LMS algorithm.
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Figure 6 demonstrates two key findings. First, there is a large improvemen
MSE between no-beamforming and 2 sensor beamforming, which shows
beamforming algorithms can be used enhance the signal and separate the d
signal from the uncorrelated noise. Second, the Maximum Power beamform
algorithm achieves better than 3 dB improvement in performance compared to
LMS algorithm, but at the cost of dissipating 5 times more energy.

4. LOW POWER TECHNIQUES FOR LMS BEAMFORMING
Energy scalability can be achieved by monitoring energy resources, latency

performance requirements to dynamically reconfigure an algorithm. Due to its
complexity, the LMS algorithm is better suited for low power applications. In ad
tion, the LMS algorithm is flexible because it dynamically changes the value of
filter coefficients to adapt to a changing environment. We have developed a v
able-length filter architecture that can dynamically adjust the filter order and a v
able adaptation time approach to power down the update computation if the err
below a certain threshold.

An energy-aware controller monitors the LMS error function, , as well
the sensor’s energy resources/performance requirements and dynamically ch
the datapath parameters involved in the LMS algorithm. The LMS beamform
algorithm block can be implemented using a tapped delay line approach as sh
in Figure 7. This approach of approximate signal processing architectures has
found in a variety of related work in adaptive filtering [5], adaptive equalizers
VDSL [6] and broadband modems [7]. In our implementation, the LMS algorith
is implemented in software on a low power embedded processor.

4.1  Variable-Length Filtering

The length of the adaptive filter can affect the performance and energy requ
ments of the LMS algorithm. Increasing the length of the adaptive filter improv
the frequency resolution of the signal processing done, thus reducing MSE
improving performance. However, this comes at the cost of an increase in en
dissipation. In a software implementation, the number of cycles increases line

ε n( )

Figure 7. Tapped delay line structure of the LMS beamforming algorithm.
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as the filter length is increased. Thus given a specified performance requirem
the latter parts of the tapped delay line can be disabled to reduce the number o
cessor cycles. This, in turn, reduces the energy dissipated.

Figure 8 shows the relationship between filter length and MSE. This plot sh
that there is an optimal filter length which minimizes the MSE and the filter leng
providing both low power and the required performance. The optimal filter lengt
highly data dependent, but in general, a filter that is too short may not prov
enough frequency resolution, but a filter that is too long takes longer to converg
the optimal solution.

A simple variable-length filter controller computes the MSE :

(5)

where the error function, , is given in Section 3.2. A programmable thresh
α, is set and the filter length is set initially to the maximum length, Lmax. On a
frame to frame basis, the filter length is decreased until the MSE is greater thaα.

4.2  Variable Voltage Supply

Since latency is linearly related to filter length and the number of sensors,
can use a variable voltage supply and variable clock rate to further reduce en
dissipation [8]. The total energy dissipated by a digital circuit is given by

ETOT = CTOT VDD
2 + VDD Ileak∆t, (6)

where ETOT, the total energy dissipated, is the sum of the energy lost to switc
capacitance(CTOT) and the energy lost to sub-threshold current leakage (Ileak). VDD
is the voltage supply and∆t is the latency.

Assume that the throughput is fixed for the worst case scenario, whereL = Lmax,
the worst case filter length, and forM=Mmax, the maximum number of sensors. I
we have a variable-length filter architecture or receive data from fewer thanMmax
sensors, then there is less computation required than in the worst case scenari
it will be completed in fewer processor cycles. Ideally, if we reduce the clock ra
then the energy dissipated should be the same, but due to leakage and incr
latency, the energy dissipated will increase. Thus, when we reduce the clock ra

Figure 8. MSE versus filter length for different number of sensors.
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is also necessary to reduce the voltage supply level.

We have modified the StrongARM processor to run at different voltage lev
Figure 9 shows the energy versus latency for both a fixed voltage supply and a
able voltage supply, for the LMS algorithm run on the StrongARM processor.
the fixed voltage supply, the StrongARM processor frequency was reduced w
the voltage supply was held at a constant 1.42 V level. The increase in en
reflects the leakage currents and latency effects on energy dissipation. For a
able voltage supply, we can see an inverse squared relationship between the la
and the energy.

4.3  Variable Adaptation Time

Another way to save energy is to power down the LMS coefficient update co
putation (see Figure 7). The iterative equations in the LMS algorithm adaptiv
approach the optimum weighting filters by using the steepest gradient descen
the weighting filters approach the optimum solution, the error function,
approaches zero. Thus, can be monitored and a programmable threshoβ,
can be set, such that when the error falls belowβ, the LMS coefficients update com-
putation is powered down. If the error rises aboveβ, the LMS coefficients update
computation is restarted.

Figure 10 shows the tradeoff between performance and energy for the con
adaptation versus variable adaptation forβ= , and . This plot shows

Figure 9. Latency vs. energy for a variable voltage supply on the StrongARM
SA-1100.
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Figure 10. Energy vs. performance for constant adaptation and variable
adaptation.
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that as we increase the threshold, the performance worsens and there is less
dissipated. Thus, if the performance requirement can be relaxed, then a var
adaptation architecture can help to reduce power dissipation.

5. CONCLUSIONS
Simulations on the StrongARM SA-1100 processor have shown that the L

beamforming algorithm is a suitable data aggregation algorithm for the applica
of multiple distributed acoustic sensors. The LMS algorithm provides sig
enhancement and has low complexity, when compared to the Maximum Po
beamforming algorithm. We have also shown how the flexibility of the LMS alg
rithm can be exploited to further reduce the power dissipated. Simple contro
have been suggested to implement variable-length filters, variable voltage and
able adaptation time architectures.
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